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Abstract

It is well-known that Consensus, a fundamental problem of fault-tolerant dis-
tributed computing, cannot be solved in asynchronous systems with crash failures.
This impossibility result stems from the lack of reliable failure detection in such
systems. To circumvent such impossibility results, we introduce the concept of un-
reliable failure detectors that can make mistakes, and study the problem of using
them to solve Consensus.

We characterize unreliable failure detectors by two types of properties: com-
pleteness and accuracy. Informally, completeness requires that the failure detector
eventually suspects every process that actually crashes, while accuracy restricts the
mistakes that it can make. We define a hierarchy of failure detectors based on the
strength of their accuracy. We determine which failure detectors in this hierarchy
can be used to solve Consensus despite any number of crashes, and which ones
require a majority of correct processes.

We show that Consensus can be solved with "weak" failure detectors, i.e., failure
detectors that make an infinite number of mistakes. This leads to the following
question: What is the "weakest" failure detector for solving Consensus? In a
companion paper, we show that OW, one of the failure detector that we consider
here, is the weakest failure detector for solving Consensus in asynchronous systems.

In this paper, we show that Consensus and Atomic Broadcast are reducible
to each other in asynchronous systems. Thus, all our results apply to Atomic
Broadcast as well.

"Research supported by NSF grants CCR-8901780 and CCR-9102231, DARPA/NASA Ames Grant
NAG-2-593, and in part by Grants from IBM and Siemens Corp. A preliminary version of this paper
appeared in Proceedings of the Tenth ACM Symposisum on Principles of Distributed Computing, pages
325-340. ACM press, August 1991.

tAlso supported by an IBM graduate fellowship.
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1 Introduction

The design and verification of fault-tolerant distributed applications is widely viewed
as a complex endeavour. In recent years, several paradigms have been identified which
simplify this task. Key among these are Consensus and Atomic Broadcast. Roughly
speaking, Consensus allows processes to reach a common decision, which depends on their
initial inputs, despite failures. Consensus algorithms can be used to solve many problems
that arise in practice, such as electing a leader or agreeing on the value of a replicated
sensor. Atomic Broadcast allows processes to reliably broadcast messages, so that they
agree on the set of messages they deliver and the order of message deliveries. Applications
based on these paradigms include SIFT [WLG+78], State Machines [Lam78, Sch90], Isis
[BJ87, BCJ+901, Psync [PBS89j, Amoeba [Mul871, Delta-4 [Pow9l], Transis [ADKM91],
HAS [Cri87], FAA [CDD90], and Atomic Commitment.

Given their wide applicability, Consensus and Atomic Broadcast have been exten-
sively studied by both theoretical and experimental researchers for over a decade. In this
paper, we focus on solutions to Consensus and Atomic Broadcast in the asynchronous
model of distributed computing. Informally, a distributed system is asynchronous if
there is no bound on message delay, clock drift, or the time necessary to execute a step.
Thus, to say that a system is asynchronous is to make no timing assumptions whatso-
ever. This model is attractive and has recently gained much currency for several reasons:
It has simple semantics; applications programmed on the basis of this model are easier
to port than those incorporating specific timing assumptions; and in practice, variable
or unexpected workloads are sources of asynchrony-thus synchrony assumptions are at
best probabilistic.

Although the asynchronous model of computation is attractive for the reasons out-
lined above, it is well known that Consensus and Atomic Broadcast cannot be solved
deterministically in an asynchronous system that is subject to even a single crash fail-
ure [FLP85, DDS87]. 1 Essentially, the impossibility results for Consensus and Atomic
Broadcast stem from the inherent difficulty of determining whether a process has actually
crashed or is only "very slow".

To circumvent these impossibility results, previous research focused on the use of
randomization techniques [CD89], the definition of some weaker problems and their so-
lutions [DLP+86, ABD+87, BW87, BMZ88], or the study of several models of partial
synchrony [DDS87, DLS88]. Nevertheless, the impossibility of deterministic solutions
to many agreement problems (such as Consensus and Atomic Broadcast) remains a
major obstacle to the use of the asynchronous model of computation for fault-tolerant
distributed computing.

In 1his paper, we propose an alternative approach to circumvent such impossibility
results, and to broaden the applicability of the asynchronous model of computation.
Since impossibility results for asynchronous systems stem from the inherent difficulty of

1Roughly speaking, a crash failure occurs when a process that has been executing correctly, stops
prematurely. Once a process crashes, it does not recover.
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determining whether a process has actually crashed or is only "very slow", we propose
to augment the asynchronous model of computation with a model of an external failure
detection mechanism that can make mistakes. In particular, we model the concept of
unreliable failure detectors for systems with crash failures.

We consider distributed failure detectors: each process has access to a local failure
detector module. Each local module monitors a subset of the processes in the system,
and maintains a list of those that it currently suspects to have crashed. We assume that
each failure detector module can make mistakes by erroneously adding processes to its
list of suspects: i.e, it can suspect that a process p has crashed even though p is still
running. If this module later believes that suspecting p was a mistake, it can remove p
from its list. Thus, each module may repeatedly add and remove processes from its list
of suspects. Furthermore, at any given time the failure detector modules at two different
processes may have different lists of suspects.

It is important to note that the mistakes made by an unreliable failure detector
should not prevent any correct process from behaving according to specification even if
that process is (erroneously) suspected to have crashed by all the other processes. For
example, consider an algorithm that uses a failure detector to solve Atomic Broadcast
in an asynchronous system. Suppose all the failure detector modules wrongly (and per-
manently) suspect that correct process p has crashed. The Atomic Broadcast algorithm
must still ensure that p delivers the same set of messages, in the same order, as all the
other correct processes. Furthermore, if p broadcasts a message m, all correct processes
must deliver mr.2

We define failure detectors in terms of abstract properties as opposed to giving spe-
cific implementations; the hardware or software implementation of failure detectors is
not the concern of this paper. This approach allows us to design applications and prove
their correctness relying solely on these properties, without referring to low-level net-
work parameters (such as the exact duration of time-outs that are used to implement
failure detectors). This makes the presentation of applications and their proof of cor-
rectness more modular. Our approach is well-suited to model many existing systems
that decouple the design of fault-tolerant applications from the underlying failure de-
tection mechanisms, such as the Isis Toolkit [BCJ+90] for asynchronous fault-tolerant
distributed computing.

We characterize a failure detector by specifying the completeness property and ac-
curacy property that it must satisfy. Informally, completeness requires that the failure
detector eventually suspects every process that actually crashes, 3 while accuracy restricts
the mistakes that a failure detector can make. We define two completeness and four ac-
curacy properties, which gives rise to eight failure detectors, and consider the problem

2A different approach was taken by the Isis system [RB91]: a correct process that is wrongly suspected
to have crashed, is forced to leave the system. In other words, the Isis failure detector forces the system
to conform to its view. To applications such a failure detector makes no mistakes. For a more detailed
discussion on this, see Section 8.3.

$in this int•roduction, we say that the failure detector suspects that a process p has crashed if any
local failure detector module suspects that p has crashed.
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of solving Consensus using each one of them.4

To do so, we first introduce the concept of "reducibility" among failure detectors.
Informally, a failure detector D' is reducible to failure detector D if there is a distributed
algorithm that can use V to emulate Vi. Given this reduction algorithm, anything that
can be done using failure detector Vi, can be done using V instead. Two failure detectors
are equivalent if they are reducible to each other. Using this concept, we partition our
eight failure detectors into four equivalence classes, and consider how to solve Consensus
for each class.

We show that only four of our eight failure detectors can be used to solve Consensus
in systems in which any number of processes may crash. However, if we assume that a
majority of the processes do not crash, then any of our eight failure detectors can be
used to solve Consensus. In order to better understand where the majority requirement
becomes necessary, we study an infinite hierarchy of failure detectors that contains the
eight failure detectors mentioned above, and show exactly where in this hierarchy the
majority requirement becomes necessary.

Of special interest is OW, the weakest failure detector considered in this paper.
Informally, OW satisfies the following two properties:

"* Completeness: There is a time after which every process that crashes is always
suspected by some correct process.

"* Accuracy. There is a time after which some correct process is never suspected by
any correct process.

The failure detector OW can make an infinite number of mistakes: Each local failure
detector module of OW can repeatedly add and then remove correct processes from its
list of suspects (this reflects the inherent difficulty of determining whether a process or
a link is just slow or whether it has crashed). Moreover, some correct processes may be
erroneously suspected to have crashed by all the other processes throughout the entire
execution.

The two properties of OW state that eventually something must hold forever; this
may appear too strong a requirement to implement in practice. However, when solving a
problem that "terminates", such as Consensus, it is not really required that the properties
hold forever, but merely that they hold for a sufficiently long time, i.e., long enough for
the algorithm that uses the failure detector to achieve its goal. For instance, in practice
our algorithm that solves Consensus using OW only needs the two properties of O'W
to hold for a relatively short period of time. However, in an asynchronous system it is
not possible to quantify "sufficiently long", since even a single process step or a single
message transmission is allowed to take an arbitrarily long amount of time. Thus, it is
convenient to state the properties of O)W in the stronger form given above.

"We later show that Consensus and Atomic Broadcast are eqidalent in asynchronous systems: any
Consensus algorithm can be transformed into an Atomic Broadcast algorithm and vice versa. Thus, we
can focus on Consensus since all our results will automatically apply to Atomic Broadcast as well.
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Another advantage of using OW (as opposed to stronger failure detectors) is the fol-
lowing. Consider an application that relies on OW for its correctness. If this application
is run in a system in which the failure detector "malfunctions" and fails to meet the
specification of OW, then we may lose the liveness properties of the application, but its
safety properties will never be violated.

The failure detector abstraction is a clean extension to the asynchronous model of
computation that allows us to solve many problems that are otherwise unsolvable. Nat-
urally, the question arises of how to support such an abstraction in an actual system.
Since we specify failure detectors in terms of abstract properties, we are not committed
to a particular implementation. For instance, one could envision specialised hardware
to support this abstraction. However, most implementations of failure detectors are
based on time-out mechanisms. For the purpose of illustration, we now outline one such
implementation of OW.

Informally, if a process times-out on some process q, it adds q to its list of suspects,
and it broadcasts a message to all processes (including q) with this information. Any
process that receives this broadcast adds q to its list of suspects. If q has not crashed, it
broadcasts a refutation. If a process receives q's refutation, it removes q from its list of
suspects.

In the purely asynchronous system, this scheme does not implement <>W:5 an un-
bounded sequence of premature time-outs (with corresponding refutations) may cause
every correct process to be repeatedly added and then removed from every correct pro-
cess' list of suspects, thereby violating the accuracy property of OW. Nevertheless, in
many practical systems, one can choose the time-out periods so that eventually there
are no premature time-outs on at least one correct process p. This gives the accuracy
property of (W: there is a time after which p is permanently removed from all the lists
of suspects. Recall that, in practice, it is not necessary for this to hold permanently; it
is sufficient that it holds "long enough" for the application using the failure detector to
complete its task. Accordingly, it is not necessary for the premature time-outs on p to
cease permanently: it is sufficient that they cease for "long enough".

Having made the point that OW can be implemented in practical systems using
time-outs, we reiterate that all reasoning about failure detectors (and algorithms that
use them) should be done in terms of their abstract properties and not in terms of any
particular implementation. This is an important feature of this approach, and the reader
should refrain from thinking of failure detectors in terms of specific time-out mechanisms.

The failure detection information provided by OW, the weakest failure detector con-
sidered in this paper, is sufficient to solve Consensus. But is it necessary? In other words,
is it possible to solve Consensus with a failure detector that provides less information
about failures than OCW? Indeed, what it is the "weakest" failure detector for solving
Consensus? In [CHT92], we show that OW is the weakest failure detector that can be

$lndeed, no scheme could implement O>W in the purely asynchronous system: as we show in Section
6.2, such an implementation could be used to solve Consensus in such a system, contradicting the
impossibility result of [FLP85].
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used to solve Consensus in asynchronous systems (with a majority of correct processes).
More precisely, we show how to emulate OW using any failure detector V that can be
used to solve Consensus. Thus, in a precise sense, OW is necessary and sufficient for
solving Consensus in asynchronous systems (with a majority of correct processes). This
result is further evidence to the importance of OW for fault-tolerance in asynchronous
distributed computing.

In our discussion so far, we focused on the Consensus problem. In Section 7, we
show that Consensus is equivalent to Atomic Broadcast in asynchronous systems with
crash failures. This is shown by reducing each problem to the other.6 In other words, a
solution for one automatically yields a solution for the other. Both reductions apply to
any asynchronous system (in particular, they do not require the assumption of a failure
detector). Thus, Atomic Broadcast can be solved using the unreliable failure detectors
described in this paper. Furthermore, OCW is the weakest failure detector that can be
used to solve Atomic Broadcast.

A different tack on circumventing the unsolvability of Consensus is pursued in [DDS87]
and [DLS88]. The approach of those papers is based on the observation that between
the completely synchronous and completely asynchronous models of distributed systems
there lie a variety of intermediate partially synchronous models. In particular, those two
papers consider 34 different models of partial synchrony and for each model determine
whether or not Consensus can be solved. In this paper, we argue that partial synchrony
assumptions can be encapsulated in the unreliability of the failure detector. For example,
we show how to implement one of our failure detectors (which is stronger than OCW), in
the models of partial synchrony considered in [DLS88]. This immediately implies that
Consensus and Atomic Broadcast can be solved in these models. Thus, our approach
can be used to unify several seemingly unrelated models of partial synchrony.7

As we argued earlier, using the asynchronous model of computation is highly desirable
in many applications: it results in code that is simple, portable and robust. However,
the fact that fundamental problems such as Consensus and Atomic Broadcast have no
(deterministic) solutions in this model is a major obstacle to its use in fault-tolerant
distributed computing. Our model of unreliable failure detectors provides a natural and
simple extension of the asynchronous model of computation, in which Consensus and
Atomic Broadcast can be solved deterministically. Thus, this extended model retains
the advantages of asynchrony without inheriting its disadvantages. We believe that
this approach is an important contribution towards bridging the gap between known
theoretical impossibility results and the need for fault-tolerant solutions in real systems.

The remainder of this paper is organised as follows. In Section 2, we describe our
model and introduce eight failure detectors in terms of their abstract properties. In
Section 3, we show that these eight failure detectors fall into four equivalence classes-
this allows us to focus on four failure detectors rather than eight. In Section 4, we

'They are actually equivalent even in asynchronous systems with arbitrary, i.e., "Byzantine", failures.
However, that reduction is more complex and is omitted from this paper.

7For a more detailed discussion on this, see Section 8.
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present Reliable Broadcast, a communication primitive that seveial of our algorithms
use. In Section 5, we define the Consensus problem. In Section 6, we show how to
solve Consensus for each one of the four equivalence classes of failure detectors. In
Section 7, we show that Consensus and Atomic Broadcast are equivalent to each other
in asynchronous systems. In Section 8, we discuss related work, and in particular, we
describe an implementation of an unreliable failure detector that is more powerful than

>•W, in several models of partial synchrony. In the Appendix we define an infinite
hierarchy of failure detectors, and determine exactly where in this hierarchy a majority
of correct processes is required to solve Consensus.

2 The model

We consider asynchronous distributed systems in which there is no bound on message
delay, clock drift, or the time necessary to execute a step. Our model of asynchronous
computation with failure detection is patterned after the one in [FLP85]. The system
consists of a set of n processes, II = {pl, P2, ... ,p,n }. Every pair of processes is connected
by a reliable communication channel.

To simplify the presentation of our model, we assume the existence of a discrete global
clock. This is merely a fictional device: the processes do not have access to it. We take
the range T of the clock's ticks to be the set of natural numbers.

2.1 Failures and failure patterns

Processes can fail by crashing, i.e., by prematurely halting. A failure pattern F is a
function from T to 2n, where F(t) denotes the set of processes that have crashed through
time t. Once a process crashes, it does not "recover", i.e., Vt : F(t) _ F(t + 1). We
define crashed(F) = Uter F(t) and correct(F) = II - crashed(F). If p E crashed(F) we
say p crashes in F and if p E correct(F) we say p is correct in F. We consider only
failure patterns F such that at least one process is correct, i.e., correct(F) 5# 0.

2.2 Failure detectors

Each failure detector module outputs the set of processes that it currently suspects to
have crashed.' A failure detector history H is a function from II x T to 2". H(p, t) is the
value of the failure detector module of process p at time t. If q E H(p, t), we say that p
suspects q at time t in H. We omit references to H when it is obvious from the context.
Note that the failure detector modules of two different processes need not agree on the
list of processes that are suspected to have crashed, i.e., if p $4 q then H(p, t) 3 H(q, t)
is possible.

'In [CHT921 we study a more general class of failure detectors: their modules can output values from
an arbitrary range.
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Informally, a failure detector V provides (possibly incorrect) information about the

failure pattern F that occurs in an execution. Formally, failure detector V) is a function
that maps each failure pattern F to a set of failure detector histories D(F). This is the
set of all failure detector histories that could occur in executions with failure pattern F
and failure detector D. 9

In this paper, we do not define failure detectors in terms of specific implementations.
Such implementations would have to refer to low-level network parameters, such as the
network topology, the message delays, and the accuracy of the local clocks. To avoid this
problem, we specify a failure detector in terms of two abstract properties that it must
satisfy: completeness and accuracy. This allows us to design applications and prove their
correctness relying solely on these properties.

2.3 Failure detector properties

2.3.1 Completeness

We consider two completeness properties:

9 Strong completeness. Eventually every process that crashes is permanently sus-
pected by every correct process. Formally, D satisfies strong completeness if:

VF, VH E D(F),3t E T, Vp E crashed(F),Vq E correct(F),Vt' >_ t : p E H(q,t')

* Weak completeness. Eventually every process that crashes is permanently sus-
pected by some correct process. Formally, D satisfies weak completeness if:

VF, VH E V(F), 3t E T, Vp E crashed(F), 3q E correct(F), Vt' >_ t : p E H(q, t')

However, completeness by itself is not a useful property. To see this, consider a failure
detector which causes every process to permanently suspect every other process in the
system. Such a failure detector trivially satisfies strong completeness but is clearly useless
since it provides no information about failures. To be useful, a failure detector must also
satisfy some accuracy property that restricts the mistakes that it can make. We now
consider such properties.

2.3.2 Accuracy

Consider the following two accuracy properties:

'In general, there are many executions with the same failure pattern F (e.g, these executions may
differ by the pattern of their message exchange). For each such execution, D may give a different failure
detector history.
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* Strong accuracy. No process is suspected before it crashes. Formally, V satisfies

strong accuracy if:

VF, VH E D(F),Vt E T, Vp, q E H - F(t) : p §' H(q,t)

Since it is difficult (if not impossible) to achieve strong accuracy in many practical
systems, we also define:

* Weak accuracy. Some correct process is never suspected. Formally, V satisfies
weak accuracy if:

VF, VH E D(F), 3p E correct(F), Vt E T, Vq E II - F(t) : p 0 H(q,t)

Even weak accuracy guarantees that at least one correct process is never suspected.
Since this type of accuracy may be difficult to achieve, we consider failure detectors
that may suspect every process at one time or another. Informally, we only require that
strong accuracy or weak accuracy are eventually satisfied. The resulting properties are
called eventual strong accuracy and eventual weak accuracy, respectively.

For example, eventual strong accuracy requires that there is a time after which strong
accuracy holds. Formally, D satisfies eventual strong accuracy if:

VF, VH E D(F),3t E T, Vt' > t, Vp, q E II - F(t') :p ý H(q,t')

An observation is now in order. Since all faulty processes will crash after some finite
time, we have:

VF, 3t E T, Vt' > t : H - F(t') = correct(F)

Thus, an equivalent and simpler formulation of eventual strong accuracy is:

• Eventual strL.ng accuracy. There is a time after which correct processes are not
suspected by any correct process. Formally, V satisfies eventual strong accuracy
if:

VF, VH E V(F),3t E T, Vt' > t, Vp, q E correct(F) : p 0 H(q,t')

Similarly, we specify eventual weak accuracy as follows:

* Eventual weak accuracy. There is a time after which some correct process is never
suspected by any correct process. Formally, D satisfies eventual weak accuracy if:

VF, VH E V(F), 3t E T, 3p E correct(F), Vt' > t, Vq E correct(F) : p V H(q, t')

We will refer to eventual strong accuracy and eventual weak accuracy as eventual
accuracy properties, and strong accuracy and weak accuracy as perpetual accuracy prop-
erties.
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Accuracy
Completeness Strong Weak Eventual Strong Eventual Weak

Eventually Eventually
Strong Perfect FD Strong FD Perfect FD Strong FD

P OP OS
Eventually

Weak Weak FD Weak FD
1_ Q W OQ OW

Figure 1: Some failure detector specifications based on accuracy and completeness.

2.4 Some failure detector definitions

A failure detector can be specified by stating the completeness property and the accuracy
property that it must satisfy. Combining the two completeness properties with the four
accuracy properties that we defined in the previous section gives rise to the eight different
failure detectors defined in Figure 1. For example, we say that a failure detector is
Eventually Strong if it satisfies strong completeness and eventual weak accuracy. We
denote such a failure detector by OS.

2.5 Algorithms and runs

In this paper, we focus on algorithms that use unreliable failure detectors. To describe
such algorithms, we only need informal definitions of algorithms and runs, based on the
formal definitions given in [CHT92]. 10

An algorithm A is a collection of n deterministic automata, one for each process in
the system. Computation proceeds in steps of A. In each step, a process (1) may receive
a message that was sent to it, (2) queries its failure detector module, (3) undergoes a
state transition, and (4) may send a message. Since we model asynchronous systems,
messages may experience arbitrary (but finite) delays. Furthermore, there is no bound
on relative process speeds.

Informally, a run of e!gorithm A using a failure detector V is a tuple R = (F, H-, I, S, T)
where F is a failure pattern, Hv E D(F) is a history of failure detector V for failure
pattern F, I is an initial configuration of A, S is an infinite seqluence of steps of A, and
T is a list of increasing time values indicating when each step in S occurred. A run
must satisfy certain well-formedness and fairness properties. In particular, (1) a process
cannot take a step after it crashes, (2) when a process takes a step and queries its failure
detector module, it gets the current value output by its local failure detector module,
and (3) every process that is correct in F takes an infinite number of steps in S and

"1Formal definitions are necessary in [CHT92] to prove a subtle lower bound.
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D' emulated

Algorithm B uses V

Figure 2: Transforming V into V

eventually receives every message sent to it.
We use the following notation. Let v be a variable in algorithm A. We denote by vp

process p's copy of v. The history of v in run R is denoted by vR, i.e., vR(p, t) is the
value of vp at time t in run R. We denote by V1p process p's local failure detector module.
Thus, the value of Vp at time t in run R = (F, H-, I, S, T) is HD(p, t).

2.6 Reducibility

We now define what it means for an algorithm Tv.v to transform a failure detector
V into another failure detector V. Algorithm T-.D. uses V to maintain a variable
output, at every process p. This variable, reflected in the local state of p, emulates the
output of V at p. Algorithm Tv-.v, transforms V into V if and only if for every run
R = (F, HV, I, S, T) of Tv-.zV using V, outputR E V'(F).

Given the reduction algorithm T-.Dv,, anything that can be done using failure detec-
tor 7Y, can be done using V instead. To see this, suppose a given algorithm B requires
failure detector 2Y, but only V is available. We can still execute B as follows. Concur-
rently with B, processes run T.D.-.J to transform V into V. We modify Algorithm B at
process p as follows: whenever p is required to query its failure detector module, p reads
the current value of outputp (which is concurrently maintained by TD...) instead. This
is illustrated in Figure 2.

Intuitively, since TD.-.., is able to use V to emulate V, V provides at least as much
information about process failures as V does. Thus, if there is an algorithm TD-• that
transforms V into 1Y, we write V >- V and say that V is reducible to V; we also say
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that V is weaker than V. If D >-- V and V' >- A we write E) ý-D V and say that E) and
V' are equivalent.

Note that, in general, TD-D, need not emulate all the failure detector histories of V';
what we do require is that all the failure detector histories it emulates be histories of V.

Consider the "identity" transformation T-.D.V in which each process p periodically
wribes the current value output by its local failure detector module into output. The
following is immediate from TV.V and the definition of reducibility.

Observation 1: P _- Q, S - W, OP? t 0>Q, OS >- O>W.

3 From weak completeness to strong completeness

In Figure 3, we give a reduction algorithm TD-.D, that transforms any given failure
detector D that satisfies weak completeness, into a failure detector V' that satisfies strong
completeness. Furthermore, for each failure detector V defined in Figure 1, T-.V• gives a
failure detector V that has the same accuracy property as V. Roughly speaking, TV.V,
strengthens the completeness property while preserving accuracy.

This result allows us to focus on the failure detectors that are defined in the first row
of Figure 1, i.e., those with strong completeness. This is because, TV.-.V, (together with
Observation 1) shows that every failure detector in the second row of Figure 1 is actually
equivalent to the corresponding failure detector above it in that figure.

Informally, T1 -..4 , works as follows. Every process p periodically sends
(p, suspectsp)-where suspects, denotes the set of processes that p suspects according
to its local failure detector module-to all the processes. When a process q receives
a message of the form (p, suspectsp), it adds suspectsp to outputq and removes p from
outputq.

Let R = (F, Hv, I, S, T) be an arbitrary run of Tv-.v using failure detector V. In
the following, the run R and its failure pattern F are fixed. Thus, when we say that a
process crashes we mean that it crashes in F. Similarly, when we say that a process is
correct, we mean that it is correct in F. We will show that output" satisfies the following
properties:

P1 : (Transforming weak completeness into strong completeness) Let p be any process
that crashes. If eventually some correct process permanently suspects p in H-D, then
eventually all correct processes permanently suspect p in outputR. More formally:

Vp E crashed(F) :
3t E T, 3q E correct(F), Vt' > t p E Hp(q, t')

= 3t E T, Vq E correc4(F), Vt' >_ t : p E outputR(q, e)

P2 : (Preserving perpetual accuracy) Let p be any process. If no process suspects p
in HD before time t, then no process suspects p in output" before time t. More
formally:
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Every process p executes the following-

output +- 0

cobegin
Task 1: repeat forever

{p queries its local failure detector module Vp}
suspectsp +- 2p
send (p, suspectsp) to all

II Task 2: when receive (q, suspectsq) for some q
output 4- (outputp U suspectsq) - {q}

coend

Figure 3: Tv.v,: From Weak Completeness to Strong Completeness

Vp E II, Vt E T:
Vte < t, Vq E H - F(te) p V Hv(q,t')

=0 Vte < t, Vq E II - F(f) :p 5 outputR(q,t')

P3 (Preserving eventual accuracy) Let p be any correct process. If there is a time
after which no correct process suspects p in Hv, then there is a time after which
no correct process suspects p in outputR. More formally:

Vp E correct(F):
3t E T, Vq E correct(F), Vt > t p V Hv(q,t')
3t E T, Vq E correct(F), Vt > t : p V outputR(q, t')

Lemma 2: Tv..-.., satisfies P1.

PROOF: Let p be any process that crashes. Suppose that there is a time t after which
some correct process q permanently suspects p in HV. We must show that there is a
time after which every correct process suspects p in outputR.

Since p crashes, there is a time t' after which no process receives a message from
p. Consider the execution of Task 1 by process q after time tp = max(t, t'). Process q
sends a message of the type (q, suspectsq) with p E suspectsq to all processes. Eventually,
every correct process receives (q, suspectsq) and adds p to output (see Task 2). Since no
correct process receives any messages from p after time t' and tp 2! t', no correct process
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removes p from output after time tp. Thus, there is a time after which every correct
process permanently suspects p in output'. 0

Lemma 3: Tv.vJ satisfies P2.

PROOF: Let p be any process. Suppose that there is a time t before which no process
suspects p in Hp. No process sends a message of the type (-, suspects) with p E suspects
before time t. Thus, no process q adds p to outputq before time t. 0

Lemma 4: TV-•,V satisfies P3.

PROOF: Let p be any correct process. Suppose that there is a time t after which no
correct process suspects p in HD. Thus, all processes that suspect p after time t eventually
crash. Thus, there is a time t' after which no correct process receives a message of the
type (-, suspects) with p E suspects.

Let q be any correct process. We must show that there is a time after which q does
not suspect p in outputR.

Consider the execution of Task 1 by process p after time t'. Process p sends a message
m = (p, suspectsp) to q. When q receives m, it removes p from outputq (see Task 2). Since
q does not receive any messages of the type (-, suspects) with p E suspects after time t',
q does not add p to outputq after time t'. Thus, there is a time after which q does not
suspect p in output'. 0

Theorem 5: Tv--.v transforms Q into P, W into S, <)Q into O>P, and OCW into OS.

PROOF: By Lemma 2, Tv--.v, transforms Q, W, <Q, and OCW, into failure detectors
that satisfy strong completeness. By Lemma 3, TV--.• preserves the strong accuracy of
Q and the weak accuracy of W. By Lemma 4, TDv- preserves the eventual strong accu-
racy of (Q and the eventual weak accuracy of OW. The theorem immediately follows.
0

By Theorem 5 and Observation 1, we have:

Corollary 6: -5 Q, S - W, 07' 25 0Q, and OS a,- W.

4 Reliable Broadcast

We now define Reliable Broadcast, a communication primitive that we often use in
our algorithms. Informally, Reliable Broadcast guarantees that (1) all correct processes
deliver the same set of messages, (2) all messages broadcast by correct processes are
delivered, and (3) no spurious messages are ever delivered. Formally, Reliable Broadcast
is defined in terms of two primitives, R-broadcast(m) and R-delivev(m) where m is a
message drawn from a set of possible messages. When a process executes R-broadcast(m),
we say that it R-broadcasts m, and when a process executes R-deliver(m), we say that
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Every process p executes the following*

To execute R-broadcast(m):
send m to all (including p)

R-deliver(m) occurs as follows:
when receive m for the first time

if sender(m) # p then send m to all
R-deliver(m)

Figure 4: Reliable Broadcast by message diffusion

it R-delivers m. Reliable Broadcast satisfies the following three properties: 11

Validity: If a correct process R-broadcasts a message m, then all correct processes
eventually R-deliver m.

Agreement: If a correct process R-delivers a message m, then all correct processes
eventually R-deliver m.

Uniform integrity: For any message m, each process R-delivers m at most once, and
only if m was R-broadcast by some process.

In Figure 4, we give a simple Reliable Broadcast algorithm for asynchronous systems.
Informally, when a process receives a message for the first time, it relays the message

to all processes and then R-delivers it. It is easy to show that this algorithm satisfies
validity, agreement and uniform integrity in asynchronous systems with up to n - 1 crash

failures. The proof is obvious and therefore omitted.

5 The Consensus problem

In the Consensus problem, all correct processes propose a value and must reach a unan-
imous and irrevocable decision on some value that is related to the proposed values

[Fis83]. We define the Consensus problem in terms of two primitives, propose(v) and
decide(v), where v is a value drawn from a set of possible proposed values. When a pro-
cess executes propose(v), we say that it proposes v; similarly, when a process executes
decide(v), we say that it decides v. The Consensus problem is specified as follows:

"1 For simplicity, we assume that each message is unique. In practice, this can be achieved by tagging
the identity of the sender and a sequence number on each message.
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Termination: Every correct process eventually decides some value.

Uniform validity: If a process decides v, then v was proposed by some process. 12

Uniform integrity: Every process decides at most once.

Agreement: No two correct processes decide differently.

It has been proved that there is no deterministic algorithm for Consensus in asynchronous
systems that are subject to even a single crash failure [FLP85, DDS87]. We now show
how to use unreliable failure detectors to solve Consensus in asynchronous systems.

6 Solving Consensus using unreliable failure detec-
tors

We now show how to solve Consensus using each one of the eight failure detectors defined
in Figure 1. By Theorem 5, we only need to show how to solve Consensus using the four
failure detectors that satisfy strong completeness, namely, P', S, O>P, and 0S.

Solving Consensus with the Perfect failure detector P' is simple, and is left as an
exercise for the reader. In Section 6.1, we give a Consensus algorithm that uses S.
In Section 6.2, we give a Consensus algorithm that uses OCS. Since (OP >- OS>, this
algorithm also solves Consensus with O('.

The Consensus algorithm that uses S can tolerate any number of failures. In con-
trast, the one that uses OS requires a majority of correct processes. We show that this
requirement is necessary even if one uses O>P, a failure detector that is stronger than OS.
Thus, our algorithm for solving Consensus using (> (or OP7) is optimal with respect to
the number of failures that it tolerates.

6.1 Using a Strong failure detector S

Given any Strong failure detector S, the algorithm in Figure 5 solves Consensus in
asynchronous systems. This algorithm runs through 3 phases. In Phase 1, processes
execute n - 1 asynchronous rounds (r. denotes the current round number of process p)
during which they broadcast and relay their proposed values. Each process p waits until
it receives a round r message from every process that is not in S.,, before proceeding to
round r + 1. Note that it is possible that while p is waiting for a message from q in round
r, q is added to S.. By the above rule, p stops waiting for q's message and proceeds to
round r + 1.

By the end of Phase 2, correct processes agree on a vector based on the proposed
values of all processes. The ith element of this vector either contains the proposed value

"1The validity condition captures the relation between the decision value and the proposed values.
Changing this condition results in other types of Consensus [Fis83].
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of process pi or I. We will show that this vector contains the proposed value of at least
one process. In Phase 3, correct processes decide the first non-trivial component of this
vector.

Let f denote the maximum number of processes that may crash.13 Phase 1 of the
algorithm consists of n - 1 rounds, rather than the usual f + 1 rounds of traditional
Consensus algorithms (for synchronous systems). Intuitively, this is because even a
correct process p may be suspected to have crashed by other processes. In this case,
p's messages may be ignored, and p appears to commit "send-omission" failures. Thus,
up to n - 1 processes may appear to commit such failures (rather than f). Note that
because S satisfies weak accuracy (namely, some correct process is never suspected), the
maximum number of processes that may fail or appear to fail is n - 1 rather than n.

Vp[q] denotes p's current estimate of q's proposed value. Ap[q] = vq at the end of
round r if and only if p receives vq, the value proposed by q, for the first time in round
r.

Let R = (F, Hs, I, S, T) be any run of the algorithm in Figure 5 using S in which all
correct processes propose a value. We have to show that termination, uniform validity,
agreement and uniform integrity hold.

Lemma 8: For all p and q, and in all phases, Vp[q] is either vq or I.

PROOF: Obvious from the algorithm in Figure 5. 0

Lemma 9: Every correct process eventually reaches Phase 3.

PROOF: [sketch] The only way a correct process p can be prevented from reaching Phase
3 is by blocking forever at one of the two wait statements (in Phase I and 2, respectively).
This can happen only if p is waiting forever for a message from a process q and q never
joins S.. There are two cases to consider:

1. q crashes. Since S satisfies strong completeness, there is a time after which q E 8,P.

2. q does not crash. In this case, we can show (by an easy but tedious induction on
the round number) that q eventually sends the message p is waiting for.

In both cases p is not blocked forever and reaches Phase 3. 0

Since S satisfies weak accuracy there is a correct process c that is never suspected by any
process, i.e., Vt E T, Vp E II- F(t) : c 0 Hs(p, t). Let III denote the set of processes that
complete all n - 1 rounds of Phase 1, and 1 2 denote the set of processes that complete
Phase 2. We say Vp _' V' if and only if for all k E U, Vp[k] is either Vq[k] or I.

Lemma 10: In every round r, 1 < r < n - 1, all processes p E III receive (r, Ac, c) from

process c, i.e., (r, A., c) is in msgsp[r].

"in the literature, t is often used instead of I, the notation adopted here. In this paper, we reserve t

to denote real-time.
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Every process p executes the following.

procedure propose(v.)
VP *-- 4, 1,..., l) f{p's estimate of the proposed values}
VV[P] +- vt

Phase 1: {asynchronous rounds rp, 1 < rp < n - 1}
for rp -- 1ton- 1

send (rp, Ap, p) to all
wait until [Vq: received (rp, Aq, q) or q E Sp]

{ Query the failure detector}
msgsp[rp] +- {(rp,Aq,q) I received (rp,Aq,q)}

for k -- 1 ton
if V,[k] = ± and 3(rp, Aq, q) E msgsp[rp] with Aq[k] $ 1 then

vp[k] Aq[k]
Apf I] 4-Aq[Ic]

Phase 2: send Vp to all
wait until [Vq: received Vq or q E Sp] { Query the failure detector}
lastmsgs, +- {Vq I received Vq}
for k +- 1 to n

if 3Vq E lastmsgsp with Vq[k] = I then Vp[k] +- I

Phase 3: decide( first non-i component of Vp)

Figure 5: Solving Consensus using S.
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PROOF: Since p E H1, p completes all n - 1 rounds of Phase 1. At each round r, since
c V Sp, p waits for and receives the message (r, Ac, c) from c. 0

Lemma 11: For all p E HI, Vc • Vp at the end of Phase 1.

PROOF: Suppose for some process q, V[q] 5 1 at the end of Phase 1. From Lemma 8,
V,[q] = vq. Consider any p E H1 . We must show that V,[q] = Vq at the end of Phase 1.
This is obvious if p = c, thus we consider the case where p 5 c.

Let r be the first round in which c received Vq (if c = q, we define r to be 0). From
the algorithm, it is clear that Ac[q] = vq at the end of round r. There are two cases to
consider:

1. r < n - 2. In round'r + 1 < n - i, c relays vq by sending the message (r + 1, Ac, c)
with Ad[q] = vq to all. From Lemma 10, p receives (r + 1, Ac, c) in round r + 1.
From the algorithm, it is clear that p sets Vp[q] to Vq by the end of round r + 1.

2. r = n - 1. In this case, c received vq for the first time in round n - 1. Since each
process relays vq (in its vector A) at most once, it is easy to see that Vq was relayed
by all n - 1 processes in H - {c}, including p, before being received by c. Since p
sets Vp[q] = vq before relaying vq, it follows that Vp[q] = vq at the end of Phase 1.0

Lemma 12: For all p E H 2 , V, = V at the end of Phase 2.

PROOF: Consider any p E H12 and q E II. We have to show that Vp[ql = Vc[qJ at the end
of Phase 2. There are two cases to consider:

1. V,[q] = v. at the end of Phase 1. From Lemma 11, for all processes p' E H1

(including p and c), V,[q] =v at the end of Phase 1. Thus, for all the vectors
V sent in Phase 2, V[q] = vq. Hence, both Vp[q] and Vc[q] remain equal to vq

throughout Phase 2.

2. Vc[q] = I at the end of Phase 1. Since c Sp, p waits for and receives V. in Phase
2. Since V,[q] = 1, p sets V,[q] *_- ± at the end of Phase 2. 0

Lemma 13: For all p E 112, Vp[c] = vc at the end of Phase 2.

PROOF: It is clear from the algorithm that Vc[cJ = v, at the end of Phase 1. From
Lemma 11, for all q E HI1, V1[c] = v, at the end of Phase 1. Thus, no process sends V

with V[c] = I in Phase 2. From the algorithm, it is clear that for all p E H2, Vp[c] = Vc

at the end of Phase 2. 0

Theorem 14: Given any Strong failure detector S, the algorithm in Figure 5 solves
Consensus in asynchronous systems with f < n.

PROOF: From the algorithm in Figure 5, it is clear that no process decides more than
once, and this satisfies the uniform integrity requirement of Consensus. From Lemma 9,
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every correct process eventually reaches Phase 3. From Lemma 13, the vector Vp of every
correct has at least one non-I component in Phase 3 (namely, Vp[c] = v,). From the
algorithm, every process p that reaches Phase 3, decides on the first non-I component of
Vp. Thus, every correct process decides some non-IJ value in Phase 3-and this satisfies
termination of Consensus. From Lemma 12, all processes that reach Phase 3 have the
same vector V. Thus, all correct processes decide the same value, and agreement of
Consensus is satisfied. From Lemma 8, this non-I decision value is the proposed value
of some process. Thus, uniform validity of Consensus is also satisfied. 0

By Theorems 5 and 14, we have:

Corollary 15: Given any Weak failure detector W, Consensus is solvable in asyn-
chronous systems with f < n.

6.2 Using an Eventually Strong failure detector OS

Our previous solution to Consensus used S, a failure detector that satisfies weak accuracy:
at least one correct process was never suspected. We now solve Consensus using OS, a
failure detector that only satisfies eventual weak accuracy. With OS, all processes may
be erroneously added to the lists of suspects at one time or another. However, there is
a correct process and a time after which that process is not suspected to have crashed.
Note that at any given time t, processes cannot use OS to determine whether any specific
process is correct, or whether some correct process will never be suspected after time t.

Given any Eventually Strong failure detector OS, the algorithm in Figure 6 solves
Consensus in asynchronous systems with a majority of correct processes. We show that
solving Consensus using OS requires this majority.1" Thus, our algorithm is optimal
with respect to the number of failures that it tolerates.

The algorithm in Figure 6 uses the rotating coordinator paradigm [Rei82, CM84,
DLS88, BGP89, CT90]. Computation proceeds in asynchronous "rounds". We assume
that all processes have a priori knowledge that during round r, the coordinator is process
c = (r mod n) + 1. All messages are either to or from the "current" coordinator. Every
time a process becomes a coordinator, it tries to determine a consistent decision value.
If the current coordinator is correct and is not suspected by any surviving process, then
it will succeed, and it will R-broadcast this decision value.

The algorithm in Figure 6 goes through three asynchronous epochs, each of which
may span several asynchronous rounds. In the first epoch, several decision values are
possible. In the second epoch, a value gets locked: no other decision value is possible. In
the third epoch, processes decide the locked value.

Each round of this Consensus algorithm is divided into four asynchronous phases.
In Phase 1, every process sends its current estimate of the decision value timestamped

"4In fact, we show that a majority of correct processes is required even if one uses OP7, a stronger
failure detector.
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Every process p executes the following:

procedure propose(vp)

estimatep -- v, {denotes p's estimate of the decision value}
statep 4- undecided

rp *.- 0 {rp denotes the current round number}
tsp -- 0 {the round in which estimate, was last updated, initially 0}

{Rotate through coordinators until decision is reached}

while state, = undecided

rp -rp + 1
cp- (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {AlI processes p send estimatep to the current coordinator}

send (p,r,,estimatep,tsp) to cp

Phase 2: { The current coordinator gathers n - f estimates and proposes a new estimate}

if p = cp then

wait until [for n - f processes q : received (q, rp, estimate, ts9 ) from q]
msgsp[rp] -- {(q, rp, estimate., ts9 ) I p received (q, r,, estimateq, ts9 ) from q}

t 4- largest to, such that (q, rp, estimateg, ts.) E msgsp[rp]

estimatep +- select one estimate, such that (q, rp, estimate,, t) E msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {AlI processes wait for the new estimate proposed by the current coordinator}

wait until [received (cp,r., estimate,,) from cp or cp E OSp] { Query the failure detector}
if [received (ccp, r., estimate,,,) from cp] then (p received estimatec, from cp }

estimate1 , +- estimate.,

tSp 4-- rp

send (p, r,,ack) to cp

else send (p,rp,nack) to cp lp suspects that cp crashed}

Phase 4: fThe current coordinator waitsfor n - f replies. If these replies indicate that

P n - f processes adopted its estimate, the coordinator senda a request to decide. h

ifp= c then

wait until [for n - f processes q: received (q, rp, ack) or (q, r., nack)]
If [for n - f processes q : received (q, rp, ack)] then

R-broadcast(p, r., estimatep, decide)

(Whten p receives a decide message, it decides}

when R.deliser(q, rq, estimate9 , decide)
Uf state, = undecided then

decide(estimatet)
statep +- decided

Figure 6: Solving Consensus using OS
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with the round number in which it adopted this estimate, to the current coordinator,
c. In Phase 2, c gathers n - f such estimates, selects one with the largest timestamp,
and sends it to all the processes as their new estimate, estimatec. In Phase 3, for each
process p there are two possibilities:

1. p receives estimatec from c and sends an ack to c to indicate that it adopted
estimatec as its own estimate; or

2. upon consulting its failure detector module OSp, p suspects that c crashed, and
sends a nack to c.

In Phase 4, c waits for n - f replies (acks or hacks). If all n - f replies are acks, then
c knows that n - f processes changed their estimates to estimatec, and thus estimatec
is locked. Consequently, c R-broadcasts a request to decide estimate,. At any time, if a
process R-delivers such a request, it decides accordingly.

The proof that the algorithm in Figure 6 solves Consensus is as follows. Let R be
any run of the algorithm in Figure 6 using O>S in which all correct processes propose
a value. We have to show that termination, uniform validity, agreement and uniform
integrity hold.

Lemma 17: No two processes decide differently.15

PROOF: If no process ever decides, the lemma is trivially true. If any process decides, it
must be the case that a coordinator R-broadcast a message of the type (-, -, -, decide).
This coordinator must have received n - f messages of the type (-, -, ack) in Phase
4. Let r be the smallest round number in which n - f messages of the type (-, r, ack)
are sent to a coordinator in Phase 3. Let c denote the coordinator of round r, i.e.,
c = (r mod n) + 1. Let estimate, denote c's estimate at the end of Phase 2 of round r.
We claim that for all rounds r' > r, if a coordinator c' sends estimatee in Phase 2 of
round r', then estimatee = estimatec.

The proof is by induction on the round number. The claim trivially holds for r' = r.
Now assume that the claim holds for all r', r < r' < k. Let ck be the coordinator of
round k, i.e., ck = (k mod n) + 1. We will show that the claim holds for r' = k, i.e., if
ck sends estimateA, in Phase 2 of round k, then estimateA = estimate,.

From the algorithm it is clear that if ck sends estimatec in Phase 2 of round k then
it must have received estimates from at least n - f processes. Since f < !, there is some
process p such that p sent a (p, r, ack) message to c in Phase 3 of round r and such that
(p, k, estimatep, tap) is in msgsa [k] in Phase 2 of round k. Since p sent (p, r, ack) to c in
Phase 3 of round r, ta, = r at the end of Phase 3 of round r. Since tsa is non-decreasing,
tap > r in Phase 1 of round k. Thus in Phase 2 of round k, (p, k, estimate, tsp) is in
msgsA[k] with tap >_ r. It is easy to see that there is no message (q, k, estimateq, t8q) in

"SThis property, called uniform agreement, is stronger than the agreement requirement of Consensus

which applies only to correct processes.
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msgsc• [k] for which tSq _> k. Let t be the largest tSq such that (q, k, estimate,, tsq) is in
msgs,, [k]. Thus r < t < k.

In Phase 2 of round k, ck executes estimateCk , - estimate9 where
(q, k, estimateq, t) is in msgs,, [k]. From Figure 6, it is clear that q adopted estimateq as
its estimate in Phase 3 of round t. Thus, the coordinator of round t sent estimateq to q in
Phase 2 of round t. Since r < t < k, by the induction hypothesis, estimateq = estimate,.
Thus, ck sets estimateC, +- estimate, in Phase 2 of round k. This concludes the proof
of the claim.

We now show that if a process decides a value, then it decides estimate,. Suppose that
some process p R-delivers (q, r,, estimateq, decide), and thus decides estimate.. Process
q must have R-broadcast (q, rq, estimateq, decide) in Phase 4 of round rq. From Figure
6, q must have rec.eived n - f messages of the type (-, rq, ack) in Phase 4 of round rq.

By the definition of r, r < rq. From the above claim, estimateq = estimatec. 0

Lemma 18: Every correct process eventually decides some value.

PROOF: There are two possible cases:

1. Some correct process decides. It must have R-delivered some message of the type
(-, -, , decide). By the agreement property of Reliable Broadcast, all correct
processes eventually R-deliver this message and decide.

2. No correct process decides. We claim that no correct process remains blocked
forever at one of the wait statements. The proof is by contradiction. Let r be the
smallest round number in which some correct process blocks forever at one of the
wait statements. Thus, all correct pro~esses reach the end of Phase 1 of round r:
they all send a message of the type (-, r, estimate, -) to the current coordinator
c = (r mod n) + 1. Therefore at least n - f such messages are sent to c. There are
two cases to consider:

(a) Eventually, c receives those messages and replies by sending
(c, r, estimate,). Thus, c does not block forever at the wait statement in
Phase 2.

(b) c crashes.

In the first case, every correct process receives (c, r, estimatec). In the second case,
since OS satisfies strong completeness, for every correct process p there is a time
after which c is permanently suspected by p, i.e., c E OS.. Thus in either case, no
correct process blocks at the second wait statement (Phase 3). So every correct
process sends a message of the type (-, r, ack) or (-, r, nack) to c in Phase 3. Since
there are n - f correct processes, c cannot block at the wait statement of Phase
4. This shows that all correct processes complete round r-a contradiction that
completes the proof of our claim.

Since OS satisfies eventual weak accuracy, there is a correct process q and a time
t such that no correct process suspects q after t. Thus, all processes that suspect
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q after time t eventually crash and there is a time t' after which no process sends
a message of the type (-, r, nack) where q is the coordinator of round r (i.e.,
q = (r mod n) + 1). From this and the above claim, there must be a round r such
that:

(a) All correct processes reach round r after time t' (when no process suspects q).

(b) q is the coordinator of round r (i.e., q = (r mod n) + 1).

In Phase 1 of round r, all correct processes send their estimates to q. In Phase
2, q receives n - f such estimates, and sends (q, r, estimateq) to all processes. In
Phase 3, since q is not suspected by any correct process after time t, every correct
process waits for q's estimate, eventually receives it, and replies with an ack to q.
Furthermore, no process sends a nack to q (that can only happen when a process
suspects q). Thus in Phase 4, q receives n - f messages of the type (-, r, ack) (and
no messages of the type (-, r, nack)), and q R-broadcasts (q, r, estimateq, decide).
By the validity property of Reliable Broadcast, eventually all correct processes R-
deliver q's message and decide-a contradiction. Thus case 2 is impossible, and
this concludes the proof of the lemma. 0

Theorem 19: Given any Eventually Strong failure detector OS, the algorithm in Figure
6 solves Consensus in asynchronous systems with f < E

PROOF:

Termination: by Lemma 18.

Agreement by Lemma 17.

Uniform integrity: It is clear from the algorithm that no process decides more than once.

Uniform validity: from the algorithm, it is clear that all the estimates that a coordinator
receives in Phase 2 are proposed values. Therefore, the decision value that a
coordinator selects from these estimates must be the value proposed by some
process. Thus, uniform validity is satisfied. 0

By Theorems 5 and 19, we have:

Corollary 20: Given any Eventually Weak failure detector OW, Consensus is solvable
in asynchronous systems with f < n2

Thus, the weakest failure detector considered in this paper, OW, is sufficient to solve
Consensus in asynchronous systems. This leads to the following question: What is the
weakest failure detector for solving Consensus? Using the concept of reducibility, in
[CHT92] we show that OW is indeed the weakest failure detector for solving Consensus
in asynchronous systems with a majority of correct processes. More precisely, we show:



25
Theorem 21: [CHT92] If a failure detector V can be used to solve Con -ensus in an
asynchronous system, then V >- O>W in that system.

By Corollary 20 and Theorem 21, we have:

Corollary 22: O>W is the weakest failure detector for solving Consensus in an asyn-
chronous system with f < R2

6.3 A lower bound on fault-tolerance

In Section 6.1, we showed that failure detectors with perpetual accuracy (i.e., 1', Q, S, or
W) can be used to solve Consensus in asynchronous systems with any number of failures.
In contrast, with failure detectors with eventual accuracy (i.e., <>O9, C'Q, 0'S, or O>W),
our Consensus algorithms required a majority of the processes to be correct. We now
show that this requirement is necessary: Any algorithm that uses O>P (the strongest of
our four failure detectors with eventual accuracy) to solve Consensus requires a majority
of correct processes. Thus, the algorithm in Figure 6 is optimal with respect to fault-
tolerance.

Theorem 23: There is an Eventually Perfect failure detector O>? such that there is no
algorithm A which solves Consensus using O>P in asynchronous systems with f> ["1.
PROOF: We now describe the behaviour of an Eventually Perfect failure detector O>P
such that with every algorithm A, there is a run RA of A using O>? that does not satisfy
the specification of Consensus. Partition the processes into two sets Hio and III such that
Ho contains r11 processes, and fl1 contains the remaining [E processes. Consider any
Consensus algorithm A, and the following two runs of A using <>OP:

* Run Ro = (Fo, Ho, I, So, To): All processes in no propose 0, and all processes in
H1, propose 1. All processes in Hlo are correct in F0 , while those in H1 crash in
Fo at the beginning of the run, i.e., Vt E T : Fo(t) = HI1 (this is possible since

2 : [i]). Every process in Ho permanently suspects every process in II 1 , i.e.,
Vt E T, Vp E Ho : Ho(p, t) = H1 . In this run, it is clear that O>? satisfies the
specification of an Eventually Perfect failure detector.

o Run R1 = (FlH1 , ,I S1 , T1 ): As in Ro, all processes in 170 propose 0, and all
processes in H1 propose 1. 11 processes in fl1 are correct in F 1, while those in Ho
crash in F, at the beginning of the run, i.e., Vt E 7 : F1 (t) = H10. Every process in
II1 permanently suspects every process in I~o, i.e., Vt E T, Vp E HII : HI(p, t) = rIo.
Clearly, O>? satisfies the specification of an Eventually Perfect failure detector in
this run.

Assume, without loss of generality, that both Ro and R1 satisfy the specifications of
Consensus. Let qo E fl0 , q9 E IIH, to be the time at which qo decides in Ro, and t, be the
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time at which q, decides in R1 . There are three possible cases-in each case we construct
a run RA = (FA, HA, IA, SA, TA) of algorithm A using 0P' such that <>7O satisfies the
specification of an Eventually Perfect failure detector, but RA violates the specification
of Consensus.

1. In Ro, q0 decides 1. Let RA = (Fo, Ho, IA, So, To) be a run identical to R0 except
that all processes in III propose 0. Since in F0 the processes in I1I crash right
from the beginning of the run, Ro and RA are indistinguishable to qo. Thus, qo
decides 1 in RA (as it did in Ro), thereby violating the uniform validity condition
of Consensus.

2. In R1, q, decides 0. This case is symmetric to Case 1.

3. In Ro, qo decides 0, and in R 1, q, decides 1. Construct RA = (FA, HA, I, SA, TA) as
follows. No processes crash in FA, i.e., Vt E T: FA(t) = 0. As before, all processes
in I1o propose 0 and all processes in III propose 1. All messages from processes
in Ho to those in fII and vice-versa, are delayed until time max(to, t1). Until time
max(to, ti), every process in H1o suspects every process in 1II, and every process in
fII suspects every process in flo. After time max(to,t 1), no process suspects any
other process, i.e.:

Vt < max(to, t1 )
Vp E Io: HA(p, t) = 1II
Vp E I : HA(p, t) = 1o

Vt > max(to,ti),Vp E HI: HA(p,t) = 0

Clearly, <>OP satisfies the specification of an Eventually Perfect failure detector.

Until time max(to, t1), RA is indistinguishable from Ro for processes in Ho, and RA
is indistinguishable from R, for processes in III. Thus in run RA, q0 decides 0 at
time to, while q, decides 1 at time tl. So qo and q, decide differently in RA, and
this violates the agreement condition of Consensus.

In the Appendix, we refine the result of Theorem 23, by considering an infinite
hierarchy of failure detectors ordered by the number of mistakes they can make, and
showing exactly where in this hierarchy the majority requirement becomes necessary for
solving Consensus (this hierarchy contains all eight failure detectors that we defined in
Figure 1). Note that Theorem 23 is also a corollary of Theorem 4.3 in [DLS88] together
with Theorem 35.

7 On Atomic Broadcast

We now consider Atomic Broadcast, another fundamental problem in fault tolerant dis-
tributed computing, and show that our results on Consensus also apply to Atomic Broad-
cast. Informally, Atomic Broadcast requires that all correct processes deliver the same
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messages in the same order. Formally, Atomic Broadcast is a Reliable Broadcast that
satisfies:

9 Total order. If two correct processes p and q deliver two messages m and m', then
p delivers m before m' if and only if q delivers m before m'.

Total order and agreement ensure that all correct processes deliver the same sequence
of messages. Atomic Broadcast is a powerful communication paradigm for fault-tolerant
distributed computing [CM84, CASD85, BJ87, PGM89, BGT90, GSTC90, Sch90]. We
now show that Consensus and Atomic Broadcast are equivalent in asynchronous systems
with crash failures. This is shown by reducing each to the other.16 In other words, a
solution for one automatically yields a solution for the other. Both reductions apply
to any asynchronous system (in particular, they do not require the assumption of a
failure detector). This equivalence has important consequences regarding the solvability
of Atomic Broadcast in asynchronous systems:

1. Atomic Broadcast cannot be solved with a deterministic algorithm in asynchronous
systems, even if we assume that at most one process may fail, and it can only fail by
crashing. This is because Consensus has no deterministic solution in such systems
[FLP85I.

2. Atomic Broadcast can be solved using randomization or unreliable failure detec-
tors in asynchronous systems. This is because Consensus is solvable with these
techniques in such systems (for a survey of randomized Consensus algorithms, see
[CD89]).

Consensus can be easily reduced to Atomic Broadcast as follows. To propose a value,
a process atomically broadcasts it. To decide a value, a process picks the value of
the first message that it atomically delivers.17 By total order of Atomic Broadcast, all
correct processes deliver the same first message. Hence they choose the same value and
agreement of Consensus is satisfied. The other properties of Consensus are also easy to
verify. In the next section, we reduce Atomic Broadcast to Consensus.

7.1 Reducing Atomic Broadcast to Consensus

In Figure 7, we show how to transform any Consensus algorithm into an Atomic Broad-
cast algorithm in asynchronous systems. The resulting Atomic Broadcast algorithm
tolerates as many faulty processes as the given Consensus algorithm.

The reduction uses Reliable Broadcast, and repeated (possibly concurrent, but com-
pletely independent) executions of Consensus. Processes disambiguate between these

"U They are actually equivalent even in asynchronous systems with arbitrary failures. However, the
reduction is more complex and is omitted here.

"1TNote that this reduction does not require the assumption of a failure detector.
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executions by tagging all the messages pertaining to the kth execution of Consensus with
the number k. Tagging each message with such a number constitutes a minor modifi-
cation to any given Consensus algorithm. Informally, the kth execution of Consensus is
used to decide on the kth batch of messages to be atomically delivered. The propose
and decide primitives corresponding to the kih execution of Consensus are denoted by
propose(k, -) and decide(k, -).

Our Atomic Broadcast algorithm uses the R-broadcast(m) and R-deliver(m) primi-
tives of Reliable Broadcast. To avoid possible ambiguities between Atomic Broadcast
and Reliable Broadcast, we say that a process A-broadcasts or A-delivers to refer to a
broadcast or a delivery associated with Atomic Broadcast; and R-broadcasts or R-delivers
to refer to a broadcast or delivery associated with Reliable Broadcast.

When a process intends to A-broadcast a message m, it R-broadcasts m (in Task
1). When a process p R-delivers m, it adds m to the set R.delivere4 (Task 2). Thus,
R-deliveredp contains all the messages submitted for Atomic Broadcast (since the begin-
ning) that p is currently aware of. When p A-delivers a message m, it adds m to the set
A.deliveredp (in Task 3). Thus, R-deliveredp - A-deliveredp is the set of messages that
were submitted for Atomic Broadcast but not yet A-delivered by p. This set is denoted
by A-undeliveredp. When A-undeliveredp is not empty, p proposes A-undeliveredp as
the next batch of messages to be A-delivered. batchp(k) denotes the kth batch of messages
that p A-delivers: it is msgSetp, the set of messages agreed upon by the kth execution of
Consensus, minus A-deliveredp, those messages that p has already A-delivered."8 Pro-
cess p delivers the messages in batch(k) in some deterministic order, e.g., lexicographical
order, that was agreed a priori by all processes. This transformation of Consensus into
Atomic Broadcast is described in Figure 7 as three concurrent and indivisible tasks. The
proof of correctness follows.

Lemma 24: For any two correct processes p and q, and any message m, if m E
R-delivered, then eventually m E R-deliveredq.

PROOF: If m E R-deliveredp then p R-delivered m (in Task 2). Since p is cor-
rect, by agreement of Reliable Broadcast q eventually R-delivers m, and inserts m into
R-deliveredq. 0

Lemma 25: For any two correct processes p and q, and all k > 1:

1. If p executes propose(k, -), then q eventually executes propose(k,-).

2. If p A-delivers messages in batch,(k), then q eventually A-delivers messages in
batchq(k), and batch,(k) = batch,(k).

PROOF: The proof is by simultaneous induction on (1) and (2). For k = 1, we first
show that if p executes propose(l, -), then q eventually executes propose(I, -). When p

"Iet is possible for a process p to A-deliver a message m before it R-delivers m. This occurs if m was
proposed by another process, and agreed upon by Consensus, before p R-delivers m.
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Every process p executes the following-

Initialization:

Rdelivered . 0
Aidelivered -- 0

To execute A-broadcast(m): { Task 1 }

R-broadcast(m)

A-deliver(-) occurs as follows:

when R-deliver(m) { Task 2 }
R.delivered +- R.delivered U {m}

when R.delivered - A-delivered $ 0 { Task 3 }
k.--k+1
A-undelivered 4-- R-delivered - A-delivered
propose(k, Aundelivered)
wait until decide(k, magSet)
batch(k) 4-- msgSet - A-delivered
atomically deliver all messages in batch(k) in some deterministic order
A-delivered 4- A-delivered U batch(k)

Figure 7: Using Consensus to solve Atomic Broadcast
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executes propose(1, -), R-deliveredp must contain some message m. By Lemma 24, m is
eventually in R.deliveredq. Since A.deliveredq is initially empty, eventually R.deliveredq -

A.deliveredq 0 0. Thus, q eventually executes Task 3 and propose(1, -).
We now show that if p A-delivers messages in batchp(1), then q eventually A-delivers

messages in batchq(1), and batchp(1) = batchq,(1). From the algorithm, if p A-delivers
messages in batchp(l), it previously executed propose(l, -). From part (1) of the lemma,
all correct processes eventually execute propose(l, -). By termination and uniform in-
tegrity of Consensus, every correct process eventually executes decide(1, -) and it does
so exactly once. By agreement of Consensus, all correct processes eventually execute
decide(1, msgSet) with the same msgSet. Since A-deliveredp and A-deliveredq are ini-
tially empty, batchp(l) = batchq(1) = msgSet, = msgSetq.

Now assume that the lemma holds for all k, 1 < k < 1. We first show that if
p executes propose(l, -), then q eventually executes propose(l, -). When p executes
propose(l, -), R.delivered, must contain some message m that is not in A-deliveredp.
Thus, m is not in Ul=l batchp(k). By the induction hypothesis, batchp(k) = batchq(k)
for all 1 < k < I - 1. So m is not in Ul-1 batchq(k). Since m is in R.deliveredp,
by Lemma 24, m is eventually in R-deliveredq. Thus, there is a time after q A-delivers
batchq(l- 1) such that there is a message in R.deliveredq - A.deliveredq. So q eventually
executes Task 3 and propose(l, -).

We now show that if p A-delivers messages in batchp(l), then q A-delivers messages
in batchq(l), and batch(l) = batchq(l). Since p A-delivers messages in batchp(l), it must
have executed propose(l, -). By part (1) of this lemma, all correct processes eventually
execute propose(l, -). By termination and uniform integrity of Consensus, every correct
process eventually executes decide(l, -) and it does so exactly once. By agreement
of Consensus, all correct processes eventually execute decide(l, msgSet) with the same
msgSet. Note that batchp(l) = msgSet - U'i-1 batchp(k), and batchq(1) = msgSet -
UI-1 batchq(k). By the induction hypothesis, batch,(k) = batchq(k) for all 1 < k < I - 1.
Thus, batchp(l) = batchq(l). C

Lemma 26: The algorithm in Figure 7 satisfies agreement and total order.

PROOF: Immediate from Lemma 25, and the fact that correct processes A-deliver mes-
sages in each batch in the same deterministic order. 0

Lemma 27: (Validity) If a correct process A-broadcasts m, then all correct processes
eventually A-deliver m.

PROOF: The proof is by contradiction. Suppose some correct process p A-broadcasts
m, and some correct process never A-delivers m. By Lemma 26, no correct process
A-delivers m.

By Task I of Figure 7, p R-broadcasts m. By validity of Reliable Broadcast, every
correct process q eventually R-delivers m, and inserts m in R.delivered, (Task 2). Since
correct processes never A-deliver m, they never insert m in A-delivered. Thus, for
every correct process q, there is a time after which m is permanently in R-deliveredq -
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Aideliveredq. From Figure 7 and Lemma 25, there is a k1 , such that for all I > k1 , all
correct processes execute propose(l, -), and they do so with sets that always include m.

Since all faulty processes eventually crash, there is a k2 such that no faulty process
executes propose(l,-) with I > k2. Let k = max(k1 , k2). Since all correct processes
execute propose(k,-), by termination and agreement of Consensus, all correct processes
execute decide(k, msgSet) with the same msgSet. By uniform validity of Consensus,
some process q executed propose(k, msgSet). From our definition of k, q is correct
and msgSet contains m. Thus all correct processes A-deliver mr-a contradiction that
concludes the proof. 11

Lemma 28: (Uniform integrity) For any message m, each process A-delivers m at most
once, and only if m was A-broadcast by some process.

PROOF: Suppose a process p A-delivers m. After p A-delivers m, it inserts m in
A-delivered,. From the algorithm, it is clear that p cannot A-deliver m again.

From the algorithm, p executed decide(k, msgSet) for some k and some msgSet that
contains m. By uniform validity of Consensus, some process q must have executed
propose(k, msgSet). So q previously R-delivered all the messages in msgSet, including
m. By uniform integrity of Reliable Broadcast, some process r R-broadcast m. So, r
A-broadcast m. 0

Theorem 29: Consider any system (synchronous or asynchronous) subject to crash
failures and where Reliable Broadcast can be implemented. The algorithm in Figure 7
transforms any algorithm for Consensus into an Atomic Broadcast algorithm.

PROOF: Immediate from Lemmata 26, 27, and 28. 01

Since Reliable Broadcast can be implemented in asynchronous systems with crash
failures (Section 4), the above theorem shows that Atomic Broadcast is reducible to
Consensus in those systems. As we argued earlier, the converse is also true. Thus:

Corollary 30: Consensus and Atomic Broadcast are equivalent in asynchronous sys-
tems with crash failures.

The equivalence of Consensus and Atomic Broadcast in asynchronous systems immedi-
ately implies that our results regarding Consensus (in particular Corollaries 15 and 22,
and Theorem 23) also hold for Atomic Broadcast:

Corollary 31: Given any Weak failure detector W, Atomic Broadcast is solvable in
asynchronous systems with f < n.

Corollary 32: •W is the weakest failure detector for solving Atomic Broadcast in an
asynchronous system with f < i2

Corollary 33: There is an Eventually Perfect failure detector O)P such that there is



32
no algorithm A which solves Atomic Broadcast using OP in asynchronous systems with
1Ž> [*1.

Furthermore, Theorem 29 shows that by "plugging in" any randomized Consensus algo-
rithm (such as the ones in [CD89]) into the algorithm of Figure 7, we automatically get
a randomized algorithm for Atomic Broadcast in asynchronous systems.

Corollary 34: Atomic Broadcast can be solved by randomized algorithms in asyn-
chronous systems with f < a crash failures.

8 Related work

8.1 Partial synchrony

Fischer, Lynch and Paterson showed that Consensus cannot be solved in an asynchronous
system subject to crash failures [FLP85]. The fundamental reason why Consensus can-
not be solved in completely asynchronous systems is the fact that, in such systems, it
is impossible to reliably distinguish a process that has crashed from one that is merely
very slow. In other words, Consensus is unsolvable because accurate failure detection is
impossible. On the other hand, it is well-known that Consensus is solvable (determinis-
tically) in completely synchronous systems - that is, systems where clocks are perfectly
synchronised, all processes take steps at the same rate and each message arrives at its
destination a fixed and known amount of time after it is sent. In such a system we can
use timeouts to implement a "perfect" failure detector - i.e., one in which no process
is ever wrongly suspected, and every faulty process is eventually suspected. Thus, the
ability to solve Consensus in a given system is intimately related to the failure detection
capabilities of that system. This realisation led us to augment the asynchronous model
of computation with unreliable failure detectors as described in this paper.

A different tack on circumventing the unsolvability of Consensus is pursued in [DDS87]
and [DLS88]. The approach of those papers is based on the observation that between
the completely synchronous and completely asynchronous models of distributed systems
there lie a variety of intermediate "partially synchronous" models.

In particular, [DDS87] defines a space of 32 models by considering five key parame-
ters, each of which admits a "favourable" and an "unfavourable" setting. For instance,
one of the parameters is whether the maximum message delay is bounded and known
(favourable setting) or unbounded (unfavourable setting). Each of the 32 models corre-
sponds to a particular setting of the 5 parameters. [DDS87] identifies four "minimal"
models in which Consensus is solvable. These are minimal in the sense that the weak-
ening of any parameter from favourable to unfavourable would yield a model of partial
synchrony where Consensus is unsolvable. Thus, within the space of the models con-
sidered, [DDS871 delineates precisely the boundary between solvability and unsolvability
of Consensus, and provides an answer to the question "What is the least amount of
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Every process p executes the following:

output, - 0
for all q E II {A,(q) denotes the duration of p's time-out interval for q}

Ap(q) +- default time-out interval

cobegin
[ Task 1: repeat periodically

send "p-is-alive" message to all

[[ Task 2: repeat periodically
for all q E H

if q f outputp and p did not receive "q-is-alive" in the last Ap(q) seconds
output .-- output, U {q}

{p times-out on q: it now suspects q has crashed}

II Task 3: when receive "q-is-alive" for some q
if q E output {p knows that it prematurely timed-out on q:}

outputp 4- output - {q} { 1. p repents on q, and}
Ap(q) 4 Ap(q) + 1 {2. p increases its time-out period for q}

coend

Figure 8: A time-out based implementation of OP' in some models of partial synchrony.

synchrony sufficient to solve Consensus?".
[DLS88] considers the following two models of partial synchrony. The first model

assumes that there are bounds on relative process speeds and on message transmission
times, but these bounds are not known. The second model assumes that these bounds
are known, but they hold only after some unknown time.

In each one of these two models (with crash failures), it is easy to implement an
Eventually Perfect failure detector OP. In fact, we can implement <OP> in an even weaker
model of partial synchrony: one in which there are bounds on message transmission
times and relative process speeds, but these bounds are not known and they hold only
after some unknown time. Since OP4' is stronger than O>W, by Corollaries 20 and 32,
this implementation immediately gives Consensus and Atomic Broadcast solutions for
this model of partial synchrony and, a fortiori, for the two models of [DLS88]. The
implementation of O>P is given in Figure 8, and proven below.

Each process p periodically sends a "p-is-alive" message to all the processes. If p does
not receive a "q-is-alive" message from some process q for Ap(q) units of time, p adds
q to its list of suspects. If p receives "q-is-alive" from some process q that it currently
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suspects, p knows that its previous time-out on q was premature. In this case, p removes
q from its list of suspects and increases the length of the time-out.

Theorem 35: Consider a system in which, after some time t, some bounds on relative
process speeds and on message transmission times hold (we do not assume that t or the
value of these bounds are known). The algorithm in Figure 8 implements an Eventually
Perfect failure detector OP1 in this system.

PRooF: (sketch) We first show that strong completeness holds, i.e., eventually every
process that crashes is permanently suspected by every correct process. Suppose a pro-
cess q crashes. Clearly, q eventually stops sending "q-is-alive" messages, and there is a
time after which no correct process receives such a message. Thus, there is a time t' after
which: (1) all correct processes time-out on q (Task 2), and (2) they do not receive any
message from q after this time-out. From the algorithm, it is clear that after time t', all
correct processes will permanently suspect q. Thus, strong completeness is satisfied.

We now show that eventual strong accuracy is satisfied. That is, for any correct
processes p and q, there is a time after which p will not suspect q. There are two possible
cases:

1. Process p times-out on q finitely often (in Task 2). Since q is correct and keeps
sending "q-is-alive" messages forever, eventually p receives one such message after
its last time-out on q. At this point, q is permanently removed from p's list of
suspects (Task 3).

2. Process p times-out on q infinitely often (in Task 2). Note that p times-out on q
(and so p adds q to output.) only if q is not already in output.. Thus, q is added to
and removed from output infinitely often. Process q is only removed from output.
in Task 3, and every time this occurs the time-out period Ap(q) is increased. Since
this occurs infinitely often, Ap(q) grows unbounded. Thus, eventually (1) the
bounds on relative process speeds and on message transmission times hold, and
(2) Ap(q) is larger than the correct time-out based on these bounds. After this
point, p cannot time-out on q any more-a contradiction to our assumption that
p times-out on q infinitely often. Thus Case 2 cannot occur. 0

Thus, failure detectors can be viewed as a more abstract and modular way of incorpo-
rating partial synchrony assumptions into the model of computation. Instead of focusing
on the operational features of partial synchrony (such as the five parameters considered
in [DDS87J), we can consider the axiomatic properties that failure detectors must have
in order to solve Consensus. The problem of implementing a given failure detector in
a specific model of partial synchrony becomes a separate issue; this separation affords
greater modularity.

Studying failure detectors rather than various models of partial synchrony has other
advantages as well. By showing that Consensus is solvable using some specific failure
detector we thereby show that Consensus is solvable in all systems in which that failure
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detector can be implemented. An algorithm that relies on the axiomatic properties of
a given failure detector is more general, more modular, and simpler to understand than
one that relies directly on specific operational features of partial synchrony (that can be
used to implement the given failure detector).

From this more abstract point of view, the question "What is the least amount of
synchrony sufficient to solve Consensus?" translates to "What is the weakest failure
detector sufficient to solve Consensus?". In contrast to [DDS87], which identified a
set of minimal models of partial synchrony in which Consensus is solvable, in [CHT92]
we are able to exhibit a single minimum failure detector, OW, that can be used to
solve Consensus. The technical device that made this possible is the notion of reduction
between failure detectors.

8.2 The application of failure detection in shared memory sys-
tems

Loui and Abu-Amara showed that in an asynchronous shared memory system with
atomic read/write registers, Consensus cannot be solved even if at most one process
may crash [LA87]. This raises the following natural question: can we circumvent this
impossibility result using unreliable failure detectors? In a recent work, Lo shows that
this is indeed possible [Lo93]. In particular, he shows that using a Strong failure detector
and atomic registers, one can solve Consensus for any number of failures. He also shows
that for systems with a majority of correct processes, it is sufficient to use an Eventually
Strong failure detector and atomic registers.

8.3 The Isis toolkit

With our approach, even if a correct process p is repeatedly suspected to have crashed
by the other processes, it is still required to behave like every other correct process in
the system. For example, with Atomic Broadcast, p is still required to A-deliver the
same messages, in the same order, as all the other correct processes. Furthermore, p is
not prevented from A-broadcasting messages, and these messages must eventually be A-
delivered by all correct processes (including those processes whose local failure detector
modules permanently suspect p to have crashed). In summary, application programs that
use unreliable failure detection are aware that the information they get from the failure
detector may be incorrect: they only take this information as an imperfect "hint" about
which processes have really crashed. Furthermore, processes are never "discriminated
against" if they are falsely suspected to have crashed.

Isis takes an alternative approach based on the assumption that failure detectors
rarely make mistakes [RB91]. In those cases in which a correct process p is falsely sus-
pected by the failure detector, p is effectively forced "to crash" (via a group membership
protocol that removes p from all the groups that it belongs to). An application using
such a failure detector cannot distinguish between a faulty process that really crashed,
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and a correct one that was forced to do so. Essentially, the Isis failure detector forces the
system to conform to its view. From the application's point of view, this failure detector
looks "perfect": it never makes visible mistakes.

For the Isis approach to work, the low-level time-outs used to detect crashes must be
set very conservatively: Premature time-outs are costly (each results in the removal of
a process), and too many of them can lead to system shutdown.19 In contrast, with our
approach, premature time-outs (e.g., failure detector mistakes) are not so deleterious:
they can only delay an application. In other words, premature time-outs can affect the
liveness but not the safety of an application. For example, consider the Atomic Broad-
cast algorithm that uses O>W. If the failure detector "malfunctions", some messages may
be delayed, but no message is ever delivered out of order, and no correct process is re-
moved. If the failure detector stops malfunctioning, outstanding messages are eventually
delivered. Thus, we can set time-out periods more aggressively than Isis: in practice,
we would set our failure detector time-out periods closer to the average case, while Isis
must set time-outs to the worst-case.

8.4 Other work

Several works in fault-tolerant computing used time-outs primarily or exclusively for the
purpose of failure detection. An example of this approach is given by an algorithm in
[ADLS91, which, as pointed out by the authors, "can be viewed as an asynchronous
algorithm that uses a fault detection (e.g., timeout) mechanism."
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Appendix: A hierarchy of failure detectors and bounds
on fault-tolerance

In the preceding sections, we introduced the concept of unreliable failure detectors that
could make mistakes, and showed how to use them to solve Consensus despite such
mistakes. Informally, a mistake occurs when a correct process is erroneously added to
the list of processes that are suspected to have crashed. In this Appendix, we formalise
this concept and study a related property that we call repentance. Informally, if a process
p learns that its failure detector module V. made a mistake, repentance requires Vp to
take corrective action. Based on mistakes and repentance, we define a hierarchy of failure
detector specifications that will be used to unify some of our results, and to refine the
lower bound on fault-tolerance given in Section 6.3. This infinite hierarchy consists of a
continuum of repentant failure detectors ordered by the maximum number of mistakes
that each one can make.

Mistakes and Repentance

We now define a mistake. Let R = (F, H, I, S, T) be any run using a failure detector V.
V makes a mistake in R at time t on process p about process q if at time t, p begins to
suspect that q has crashed even though q V F(t). Formally:

Iq V F(t), q E H(p, t)] and [3t' < t, Vt", t' <•t" < t: q V H(p, t")]

Such a mistake is denoted by the tuple (R, p, q, t). The set of mistakes made by D in R
is denoted by M(R).

Note that only the erroneous addition of q into V., is counted as a mistake on p. The
continuous retention of q into V. does not count as additional mistakes. Thus, a failure
detector can make multiple mistakes on a process p about another process q only by
repeatedly adding and then removing q from the set V.. In practice, mistakes are caused
by premature time-outs.

We define the following four types of accuracy properties for a failure detector V
based on the mistakes made by V:

o Strongly k-mistaken: V makes at most k mistakes. Formally, V is strongly
k-mistaken if:

VR using V: IM(R)I < k

o Weakly k-mistaken: There is a correct process p such that V makes at most k
mistakes about p. Formally, V is weakly k-mistaken if:

VR = (F, H, I, S, T) using P, 3p E correc(F) :
II(R,q,p,t) : (R,q,p,t) E M(R)}] <_ k
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"* Strongly finitely mistaken: V makes a finite number of mistakes. Formally, D is
strongly finitely mistaken if:

VR using V: M(R) is finite.

In this case, it is clear that there is a time t after which V stops making mistakes.

" Weakly finitely mistaken: There is a correct process p such that D makes a finite
number of mistakes about p. Formally, V is weakly finitely mistaken if:

VR = (F, H, I, S, T) using V, 3p E correct(F):
{(R,q,p,t) : (R,q,p,t) E M(R)} is finite.

In this case, there is a time t after which D stops making mistakes about p.

For most values of k, the properties mentioned above are not powerful enough to be
useful. For example, suppose every process permanently suspects every other process.
In this case, the failure detector makes at most (n - 1)2 mistakes, but it is clearly useless
since it does not provide any information.

The core of this problem is that such failure detectors are not forced to reverse a
mistake, even when a mistake becomes "obvious" (say, after a process q replies to an
inquiry that was sent to q after q was suspected to have crashed). However, we can impose
a natural requirement to circumvent this problem. Consider the following scenario. The
failure detector module at process p erroneously adds q to V., at time t. Subsequently, p
sends a message to q and receives a reply. This reply is a proof that q had not crashed
at time t. Thus, p knows that its failure detector module made a mistake about q. It
is reasonable to require that, given such irrefutable evidence of a mistake, the failure
detector module at p takes the corrective action of removing q from Vp. In general, we
can require the following property:

* Repentance: If a correct process p eventually knows that q f F(t), then at some
time after t, q 0 Vp. Formally, V is repentant if:

VR = (F, H, I, S, T) using V, Vt, Vp, q E I:
[3e : (R, e) ý= Kp(q f F(t))] => [3e >_ t: q 0 H(pxt)]

The knowledge theoretic operator K. can be defined formally [HM90]. Informally (R, t)
0 iff in run R at time t, predicate 4 holds. We say (R, t) -p (RM, t) iff the run R at
time t and the run R' at time t' are indistinguishable to p. Finally, (R, t) 1= Kp(4,) .=

fV(R, te) -. P (R, t) : (RI, e) = 4,]. For a detailed treatment of Knowledge Theory as
applied to distributed systems, the reader should refer to the seminal work done in
[MDH86, HM90].
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Recall that in Section 2.2 we defined a failure detector to be a function that maps each
failure pattern to a set of failure detector histories. Thus, the specification of a failure
detector depends solely on the failure pattern actually encountered. In contrast, the defi-
nition of repentance depends on the knowledge (about mistakes) at each process. This in
turn depends on the algorithm being executed, and the communication pattern actually
encountered. Thus, repentant failure detectors cannot be specified solely in terms of the
failure pattern actually encountered. Nevertheless, repentance is an important property
that we would like many failure detectors to satisfy.

In the rest of this Appendix, we informally define a hierarchy of repentant failure
detectors that differ by their accuracy (i.e., the maximum number of mistakes they can
make). As we just noted, such failure detectors cannot be specified solely in terms of
the failure pattern actually encountered, and thus they do not fit the formal definition
of failure detectors given in Section 2.2.

A hierarchy of repetant failure detectors

We now define an infinite hierarchy of repentant failure detectors. Every failure
detector in this hierarchy satisfies weak completeness, repentance, and one of the four
types of accuracy that we defined in the previous section. We name these failure detectors
after the accuracy property that they satisfy:

* SY(k) denotes a Strongly k-Mistaken failure detector,

* SY denotes a Strongly Finitely Mistaken failure detector,

* W.'(k) denotes a Weakly k-Mistaken failure detector, and

* WY denotes a Weakly Finitely Mistaken failure detector.

Clearly, SY(0) t S.Y(X) - ... SY(k) t SY(k + 1) >- ... - SY. A similar order
holds for the WYs. Consider a system of n processes of which at most f may crash. In
this system, there are at least n-f correct processes. Since S.Y((n - f) - 1) makes fewer
mistakes than the number of correct processes, there is at least one correct process that
it never suspects. Thus, SYF((n - f) - 1) is weakly 0-mistaken, and S.Y((n - f) - 1) t

WJ'(0). Furthermore, it is clear that SY >t WYc. This infinite hierarchy of failure
detectors, ordered by reducibility, is illustrated in Figure 9 (where an edge --+ denotes
the t relation).

Each of the eight failure detectors that we considered in Section 2.4 is equivalent to
some failure detector in this hierarchy. In particular, it is easy to show that:

Observation 36:

P L -* Q -S.Y(0),

Sa5 W -• WY'(O),
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SY(O) - P - Q (strongest) ..... Consensus solvable for all f < n

S F(1) ..... Consensus solvable iff f < n

S.F(2) ..... Consensus solvable iff f < n -1

SY(n- f- 1)

W.Y(O) - S - W SY!'(LJ - 1) ..... Consensus solvable iff f < r[l + 2
Consensus solvable
for all f < n SY\(J) ..... Consensus solvable iff f < r[] + 1

WY(2)

Consensus solvable iff SY Se OP a5 OQ
f < F121 <w> Y 08 O cw (weakest)

Figure 9: The hierarchy of repentant failure detectors ordered by reducibility. This figure
also shows the maximum number of faulty processes for which Consensus can be solved
using each failure detector in this hierarchy.
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"* OP ' 0Q LI SY', and

"* OS S OW • WY.

For example, it is easy to see that the reduction algorithm in Figure 3 transforms WY
into OW. Other conversions are similar or straightforward and are therefore omitted.
Note that P and OW are the strongest and weakest failure detectors in this hierarchy,
respectively. From Corollaries 15 and 31, and. Observation 36 we have:

Corollary 37: Given WY(0), Consensus and Atomic Broadcast are solvable in asyn-
chronous systems with f < n.

Similarly, from Corollaries 20 and 32, and Observation 36 we have:

Corollary 38: Given WY', Consensus and Atomic Broadcast are solvable in asyn-
chronous systems with f < !I

Tight bounds on fault-tolerance

Since Consensus and Atomic Broadcast are equivalent in asynchronous systems with any
number of faulty processes (Theorem 30), we can focus on establishing fault-tolerance
bounds for Consensus. In Section 6, we showed that failure detectors with perpetual
accuracy (i.e., P, Q, 8, or W) can be used to solve Consensus in asynchronous systems
with any number of failures. In contrast, with failure detectors with eventual accuracy
(i.e., OP, >Q, OS, or OW), Consensus can be solved if and only if a majority of the
processes are correct. We now refine this result by considering each failure detector V in
our infinite hierarchy of failure detectors, and determining how many correct processes
are necessary to solve Consensus using V. The results are illustrated in Figure 9.

There are two cases depending on whether we assume that the system has a majority
of correct processes or not. Since OW, the weakest failure detector in the hierarchy, can
be used to solve Consensus when a majority of the processes are correct, we have:

Observation 39: If f < 1 then Consensus can be solved using any failure detector in
the hierarchy of Figure 9.

We now consider the solvability of Consensus in systems that do not have a majority of
correct processes. For these systems, we determine the maximum m for which Consensus
is solvable using S.'(m) or W.'(m). We first show that Consensus is solvable using
S.•(m) if and only if m, the number of mistakes, is less than or equal to n - f, the
number of correct processes. We then show that Consensus is solvable using WZP(m) if
and only if m = 0.

Theorem 40: Suppose f _> l. If m > n - f then there is a Strongly m-Mistaken failure
detector SF(mn) such that there is no algorithm A which solves Consensus using S.Y(m)
in asynchronous systems.
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PROOF: [sketch] We describe the behaviour of a Strongly m-Mistaken failure detector
SY•(m) such that with every algorithm A, there is a run RA of A using SY(m) that does
not satisfy the specification of Consensus. Since 1 < n - f • 2, we can partition the
processes into three sets HO, rI1 and II, d, such that H1o and HI are non-empty sets
containing n - f processes each, and I,.d is a (possibly empty) set containing the
remaining n - 2(n - f) processes. For the rest of this proof, we will only consider runs
in which all processes in uII wd crash in the beginning of the run. Let qo E Hio and

q, E fII. Consider any Consensus algorithm A, and the following two runs of A using
SY(m):

* Run Ro = (Fo, Ho, I, So, To): All processes in Hlo propose 0, and all processes
in II1 U fa.hed propose 1. All processes in 110 are correct in F0 , while all the
f processes in HlI U fI,.d crash in F0 at the beginning of the run, i.e., Vt E
T : Fo(t) = il U II hd. Process q0 permanently suspects every process in
H1 I U , i.e., Vt E T : HO(qo, t) =Ill U II, d = Fo(t). No other process
suspects any process, i.e., Vt E T,,Vq i qo : Ho(q,t) = 0. In this run, it is clear
that S.F(m) satisfies the specification of a Strongly m-Mistaken failure detector.

* Run R 1 = (F 1,HlI,IS 1 ,Ti): As in Ro, all processes in Ho propose 0, and all
processes in I11 U H,.,•d propose 1. All processes in II1 are correct in F 1, while
all the f processes in Ho U Ih d crash in F1 at the beginning of the run, i.e.,
Vt E T : F 1(t) =- H0 U H1crwId. Process q, permanently suspects every process in
1 0o U rl,.,d, and no other process suspects any process. Clearly, S.F(m) satisfies
the specification of a Strongly m-Mistaken failure detector in this run.

Assume, without loss of generality, that both Ro and RI satisfy the specification of
Consensus. Let to be the time at which qo decides in Ro, and let tl be the time at
which q, decides in RI. There are three possible cases-in each case we construct a run
RA = (FA, HA, IA, SA, TA) of algorithm A using S.Y(m) such that SYr(m) satisfies the
specification of a Strongly m-Mistaken failure detector, but RA violates the specification
of Consensus.

1. In Ro, qo decides 1. Let RA = (Fo, Ho, IA, SO, To) be a run identical to Ro except
that all processes in r 1UIIf j,.d propose 0. Since in Fo the processes in II1UI.,hd
crash right from the beginning of the run, Ro and RA are indistinguishable to qo.
Thus, qO decides 1 in RA (as it did in Ro), thereby violating the uniform validity

condition of Consensus.

2. In R 1 , q, decides 0. This case is symmetric to Case 1.

3. In R., qO decides 0, and in R1, q, decides 1. Construct RA = (FA, HA, I, SA,TA)

as follows. As before, all processes in 1i0 propose 0, all processes in HI U I,.hEd

propose 1, and all processes in I crash in FA at the beginning of the run. All
messages from processes in 110 to those in III and vice-versa, are delayed until time
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to + tI. Until time to, RA is identical to Ro, except that the processes in HI1 do not
crash, they are only "very slow" and do not take any steps before time to. Thus,
until time to, qo cannot distinguish between Ro and RA, and it decides 0 at time
to in RA (as it did in Ro). Note that by time to, the failure detector S.F(m) made
n - f mistakes in RA: qo erroneously suspected that all processes in III crashed
(while they were only slow).

From time to, the construction of RA continues as follows.

(a) At time to, all processes in nlo, except qo, crash in FA.

(b) From time to to time to + ti, ql suspects all processes in 11o U IIc,,hd, i.e.,
Vt, to • t < to + t, : HA(q1, t) = 11o U 1Hcashd, and no other process suspects
any process. By suspecting all the processes in 11o, including qo, the failure
detector makes one mistake on process ql (about qo). Thus, by time to + t1 ,

S.F(m) has made a total of (n - f) + 1 mistakes in RA. Since m > n -
S.Y(m) has made at most m mistakes in RA until time to + ti.

(c) At time to, processes in III "wake up." From time to to time to + t, they
execute exactly as they did in R1 from time 0 to time t, (they cannot perceive
this real-time shift of to). Thus, at time to + t, in run RA, q, decides 1 (as it
did at time t, in R1 ). So qo and ql decide differently in RA, and this violates
the agreement condition of Consensus.

(d) From time to + tl onwards the run RA continues as follows. No more processes
crash and every correct process suspects exactly all the processes that have
crashed. Thus, S.F(m) satisfies weak completeness, repentance, and makes
no further mistakes.

By (b) and (d), SYF(m) satisfies the specification of a Strongly m-Mistaken failure
detector in run RA. From (c), RA, a run of A that uses SY(m), violates the
specification of Consensus. 0

We now show that the above lower bound is tight: Given S.F(m), Consensus can be
solved in asynchronous systems with m < n - f.

Theorem 41: If m < n - f then Consensus can be solved in asynchronous systems
using any Strongly m-Mistaken failure detector SY(m).

PROOF: Suppose m < n - f. Since m, the number of mistakes made by S(r(m),
is less than the number of correct processes, there is at least one correct process that
S.F(m) never suspects. Thus, SF(m) satisfies weak accuracy. By definition, SYF(m)
also satisfies weak completeness. So SYr(m) is a Weak failure detector and can be used
to solve Consensus (Corollary 15).

Suppose m = n - f. Even though SYF(m) can now make a mistake on every correct
process, it can still be used to solve Consensus (even if a majority of the processes are
faulty). The algorithm uses rotating coordinators, and is similar to the one for OW in
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Figure 6. Because of this similarity, we omit the details from this Appendix. 01

From the above two theorems:

Corollary 42: Suppose f Ž E. Consensus can be solved in asynchronous systems using
any SY(m) if and only if m < n - f.

We now turn our attention to Weakly k-Mistaken failure detectors.

Theorem 43: Suppose f _! E. If m > 0 then there is a Weakly m-Mistaken failure de-
tector W.F(m) such that there is no algorithm A which solves Consensus using WY(m)
in asynchronous systems.

PROOF: In Theorem 40, we described a failure detector that cannot be used to solve
Consensus in asynchronous systems with f >_ A. It is easy to verify that this failure
detector makes at most one mistake about each correct process, and thus it is a Weakly
m-Mistaken failure detector. [

From Corollary 37 and the above theorem, we have:

Corollary 44: Suppose f 2! 1. Consensus can be solved in asynchronous systems using
any WY'(m) if and only if m = 0.


